Analysis of finite difference discretization schemes for diffusion in spheres with variable diffusivity
نویسندگان
چکیده
Two finite difference discretization schemes for approximating the spatial derivatives in the diffusion equation in spherical coordinates with variable diffusivity are presented and analyzed. The numerical solutions obtained by the discretization schemes are compared for five cases of the functional form for the variable diffusivity: (I) constant diffusivity, (II) temporally-dependent diffusivity, (III) spatially-dependent diffusivity, (IV) concentration-dependent diffusivity, and (V) implicitly-defined, temporally- and spatially-dependent diffusivity. Although the schemes have similar agreement to known analytical or semi-analytical solutions in the first four cases, in the fifth case for the variable diffusivity, one scheme produces a stable, physically reasonable solution, while the other diverges. We recommend the adoption of the more accurate and stable of these finite difference discretization schemes to numerically approximate the spatial derivatives of the diffusion equation in spherical coordinates for any functional form of variable diffusivity, especially cases where the diffusivity is a function of position.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملOn the Lagged Diffusivity Method for the Solution of Nonlinear Finite Difference Systems
Abstract: In this paper, we extend the analysis of the Lagged Diffusivity Method for nonlinear, non-steady reaction-convection-diffusion equations. In particular, we describe how the method can be used to solve the systems arising from different discretization schemes, recalling some results on the convergence of the method itself. Moreover, we also analyze the behavior of the method in case of...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & chemical engineering
دوره 71 شماره
صفحات -
تاریخ انتشار 2014